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Abstract. We investigate the dependence of the retrieval properties of the pseudo-inverse and
optimal attractor neural networks on the fraction of stored patternsα, the temperatureT and the
margin parameterκ. Phase diagrams in the full space of parameters are presented in the regime
of extreme dilution, i.e. when the connectivityC satisfies the conditionC � ln N , whereN

is the number of neurons. Furthermore, we study analytically the neighbourhood of a stored
pattern for both models by calculating the average fraction of unstable sitesε in a pattern that
differs by d sites from a given stored pattern. This analysis may shed light on the properties of
the basins of attraction of the stored patterns.

1. Introduction

The usefulness of attractor neural networks as models of associative memory was first
pointed out to the statistical physics community by Hopfield (1982). The basic idea is
to specify the synaptic weightsJij between theN neurons that compose the network so
that a given set ofP = αN binary patternsξl = (ξ l

1, . . . , ξ
l
N ), l = 1, . . . , P become the

equilibrium states of the following stochastic dynamics: given the state of the network at
time t then the state of neuroni at time t + 1 will take on the valueσ = ±1 with a
probability

1

1 + exp[−2σhi(t)/T ]
(1.1)

wherehi(t) = ∑
j 6=i Jij Sj (t) and T is by definition the temperature. The parameter that

measures the proximity of stateS(t) to patternξl is the retrieval overlap

ml
t = 1

N

∑
i

Si(t)ξ
l
i . (1.2)

It is usually assumed that the componentsξ l
i are statistically independent random variables

drawn from the distribution

p(ξ l
i ) = 1

2δ(ξ l
i − 1) + 1

2δ(ξ l
i + 1) (1.3)

whereδ(x) is the Dirac delta function.
The equilibrium properties of the Hopfield model, where the weights are given by the

Hebb rule, have been thoroughly studied by Amitet al (1985, 1987). Moreover, in the
limit of extreme random dilution, i.e. when the connectivity of the networkC satisfies the
conditionC � ln N , Derridaet al (1987) have solved exactly the neural dynamics (1.1). In
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this paper we study the retrieval properties of two classical associative memory models—the
pseudo-inverse and optimal attractor neural networks—which we describe in what follows.

The pseudo-inverse attractor neural network model (Kohonen 1984, Personnazet al
1986) can store perfectly a set of linearly independent patterns. The weightsJij are obtained
by picking the minimal norm solution of the set ofP linear equations

1l
i ≡ 1√

C
ξl
i

∑
j 6=i

Jij ξ
l
j = 1 l = 1, . . . , P (1.4)

for each i = 1, . . . , N . The quantity1l
i is termed the stability of the componentξ l

i .
The equilibrium properties of the pseudo-inverse model have been studied by Kanter and
Sompolinsky (1987) within the replica-symmetric framework in the regime of non-zero
temperature. In particular, these authors have found that the pseudo-inverse storage capacity
for random patterns isαc = 1.

The pseudo-inverse model, however, is not optimal in the sense that its storage capacity
is not maximal. In a remarkable paper, Gardner has shown how the ensemble of weights of
the optimal attractor neural network could be characterized within the statistical mechanics
framework (Gardner 1988). In fact, the weights of the optimal attractor neural network
must satisfy the inequalities

1l
i > κ (1.5)

for all i and l. The margin parameterκ > 0 is introduced in order to ensure that the stable
patternsξl possess a finite basin of attraction, although it is not at all obvious that the size of
the basins of attraction must vanish forκ = 0. It has been shown that the storage capacity
of the optimal attractor neural network for random patterns decreases with increasingκ and,
in particular, thatαc = 2 for κ = 0 (Gardner 1988).

In another remarkable contribution, Gardner has shown how the dynamics of the diluted
optimal attractor neural network could be solved exactly in the zero-temperature regime
(Gardner 1989). At non-zero temperature the retrieval overlap with a given stored pattern
obeys the equation (Amitet al 1990)

mt+1 =
∫ ∞

−∞
d1 P(1)

∫ ∞

−∞
Dy tanh

[
1

T

(
mt1 + yQ1/2

√
1 − m2

t

)]
(1.6)

where Dy = dy/
√

2πe−y2/2 is the Gaussian measure andQ = Qi = 1/N
∑

j J 2
ij is the

squared norm of the synaptic weights. HereP(1) is the distribution of probability of the
stabilities defined as (Keppler and Abbot 1988)

P(1l
i) =

〈
δ

(
1l

i − 1√
C

ξl
i

∑
j 6=i

Jij ξ
l
j

)〉
. (1.7)

The notation〈 〉 stands for the averages over the patternsξ l
i and over the ensemble of weights

that satisfy equations (1.4) or inequalities (1.5) depending on whether we are considering
the pseudo-inverse or the optimal attractor model. We note thatP(1l

i) = P(1) because of
the statistical independence of the random variablesξ l

i .
What is remarkable about equation (1.6) is that it applies to any neural network model;

the dependence on the specific model enters throughP(1) only. It must be emphasized,
however, that it applies only to the case where there is only one condensed pattern att = 0.
The diluted version of the pseudo-inverse model has been studied by Opperet al (1989) in
the regime of zero temperature, while Amitet al (1990) have carried out a thorough analysis
of the diluted version of the optimal attractor neural network in the saturation regime, i.e.
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at α = αc(κ). Actually, the zero-temperature analysis of Gardner (1989) was also restricted
to this regime.

The goal of this paper is twofold. First, we consider the diluted versions of the pseudo-
inverse and optimal attractor neural networks. We extend the analysis of Opperet al
(1989) for the pseudo-inverse model to the non-zero temperature regime, thus obtaining
the phase diagram of the model in the space(α, T ). Furthermore, we obtain the phase
diagram of the optimal attractor neural network in the full space of parameters(α, κ, T ).
As mentioned above, this phase diagram was known at the saturation regimeα = αc(κ)

only. Due to the acknowledged importance of these two associative memory models, we
think the presentation of their complete phase diagrams is a worthwhile endeavour. Second,
we investigate the nature of the neighbourhood of a stored pattern in the pseudo-inverse
and optimal attractor neural network models. To achieve this we evaluate the fractionε of
unstable sites in a test patternηl that is at a fixed Hamming distanced to the stored pattern
ξl . Clearly, the dependence ofε on d contains much information about the neighbourhood
of the stored patternξl . On the one hand, ifε = d, so that every site we flip fromξl

becomes an unstable site, then the neighbourhood of this pattern is expected to be quite
smooth. On the other hand, if a very small deviation from the fixed pointξl leads to an
abrupt increase in the number of unstable sites then its neighbourhood resembles a golf
course. In this case we can conclude that the basin of attraction ofξl is vanishingly small.

The remainder of this paper is organized as follows. In section 2 we consider the
pseudo-inverse model. The phase diagram in the space(α, T ) is presented for the diluted
version of the model and the dependence ofε on d is calculated. Section 3 is devoted to
the analysis of the optimal attractor neural network. The phase diagram in the full space of
parameters(α, κ, T ) is presented and the neighbourhood of a stored pattern is investigated.
Finally, in section 4 we summarize our results and present some concluding remarks.

2. The pseudo-inverse model

As mentioned above, the weights of the pseudo-inverse network are given by the minimal
norm solution of equation (1.4). Although this solution can be expressed in terms of the
correlation matrixCkl = 1/N

∑
i ξ

k
i ξ l

i (Kohonen 1984),

Jij = 1

N

∑
kl

ξ k
i ξ l

j (C−1)kl (2.1)

this explicit formulation is not necessary to the analysis of the diluted network for which the
knowledge of the probability distribution of the stabilities1l

i suffices. In order to evaluate
P(1l

i) we introduce the energy function

Ei(h) =
∑

l

(1l
i − 1)2 + hδ

(
1l

i − 1√
C

ξl
i

∑
j 6=i

Jij ξ
l
j

)
(2.2)

so that

P(1l
i) = − lim

β→∞
1

β

∂ ln Zi

∂h

∣∣∣∣
h=0

(2.3)

whereZi is the partition function

Zi(h) =
∏
j

∫ ∞

−∞
dJij exp(−βEi(h)) (2.4)
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and the bar indicates an average over the random variablesξ l
i . Hereβ and h are simply

auxiliary variables whose physical significance is irrelevant to our analysis. In the following
we will omit the indicesi and l since the statistical independence ofξ l

i makes all sites and
all patterns equivalent. Although the procedure to calculateP(1) is standard (Gardner and
Derrida 1988), we must be careful with the choice of the normalizationQ: for α 6 1, it
must be chosen as the smallest value for whichEi(h = 0) = 0, while for α > 1 it must be
chosen so as to minimizeEi(h = 0) (Fontanari 1993). Forα 6 1 we findQ = α/(1 − α)

and

P(1) = δ(1 − 1) (2.5)

while for α > 1 we findQ = 1/(α − 1) and

P(1) =
√

α2

2π(α − 1)
exp

[
− α2

2(α − 1)

(
1 − 1

α

)2
]

. (2.6)

Finally, we note that replacing the 1 on the right-hand side of (1.4) by a positive parameter,
sayκ, has no effect in our analysis since this parameter can be eliminated altogether simply
by redefining the normalization of the weights.

2.1. Diluted version

OnceP(1) is known, the analysis of the dynamics of the diluted neural network becomes
straightforward. The different phases in the space(α, T ) are determined by the fixed points
mt+1 = mt = m∗ of equation (1.6). In order to study these fixed points for a general neural
network model it is convenient to define the function

g(m) = m −
∫ ∞

−∞
d1 P(1)

∫ ∞

−∞
Dy tanh

[
1

T

(
m1 + yQ1/2

√
1 − m2

)]
(2.7)

so that the fixed points are the roots of

g(m) = 0 . (2.8)

We note that sinceg(−m) = −g(m) the paramagnetic fixed pointm∗ = 0 is always a
root. Moreover, since−m∗ is also a root we consider in the following analysis only the
non-negative roots of equation (2.8). Expansion of this equation in powers ofm yields

m∗ = 61/2

√
g′(m = 0)

g′′′(m = 0)
(2.9)

for the non-zero solution. Thus, the equation

g′(m = 0) = 0 (2.10)

determines the continuous transition line between the retrieval (m∗ > 0) and the
paramagnetic (m∗ = 0) phases, provided thatg′′′(m = 0) 6= 0. As usual in this sort of
mean-field analysis, the simultaneous vanishing ofg′′′(m = 0) and g′(m = 0) determines
the tricritical point (TCP). Furthermore, equation (2.10) also gives the limit of stability of
the paramagnetic fixed pointm∗ = 0: if g′(m = 0) > 0 then it is an attractive fixed
point while if g′(m = 0) 6 0 it is a repulsive fixed point. For the pseudo-inverse and the
optimal attractor models a numerical analysis of equation (2.8) shows that ifm∗ = 0 is
stable then either it is the only root or there are two additional positive roots. If, however,
m∗ = 0 is unstable then there is only one additional positive root. Finally, to determine the
discontinuous transition line we must solveg(m) = 0 andg′(m) = 0 simultaneously, since
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Figure 1. Phase diagram of the pseudo-inverse
attractor neural network showing the retrieval (R) and
the paramagnetic (P) phases. The full curve is
the discontinuous transition, the long-broken curve the
continuous transition, and the short-broken curve the limit
of stability of the paramagnetic phase. The tricritical point
occurs atα = 0.249 andT = 0.648.

at that transition, which occurs in a region wherem∗ = 0 is stable, the two positive roots
coalesce into a double root before disappearing altogether.

Reverting to the pseudo-inverse model, we have found that forα > 1 the only root
of equation (2.8) is the paramagnetic one,m∗ = 0. A similar result has been found by
Amit et al (1990) in their analysis of the optimal attractor network forα > αc(κ), i.e. in
the regime where the patterns cannot be perfectly stored. The phase diagram forα 6 1 is
presented in figure 1, where the full curve represents the discontinuous transition, the long-
broken curve the continuous transition, and the short-broken curve the limit of stability
of the paramagnetic fixed point. TheTCP is located atα = 0.249 andT = 0.648. The
short-broken curve intersects theT = 0 line at α = 1/(1 + π/2) ≈ 0.389, in agreement
with the result of Opperet al (1989). Between the full and the short-broken curves both
phases coexist. We note that the phase diagram of the fully connected model presents a
discontinuous transition only (Kanter and Sompolinsky 1987).

2.2. Neighbourhood of a stored pattern

As pointed out in the introduction, the neighbourhood of a stored pattern can be analysed
by calculating the distribution of stabilities of a test patternηl that possesses a fixed overlap
with the stored patternξl . More specifically, the components of the test pattern are generated
according to the conditional probability distribution

p(ηl
i |ξ l

i ) = 1 + b

2
δ(ηl

i − ξ l
i ) + 1 − b

2
δ(ηl

i + ξ l
i ) (2.11)

where 06 b 6 1 measures the overlap betweenηl andξl . This parameter is related to the
Hamming distanced between these two patterns:d = (1 − b)/2. We focus on the fraction
of unstable sites ofηl , i.e. the ratioε between the number of sites for which the stabilities

3l
i = 1√

N
ηl

i

∑
j 6=i

Jij η
l
j (2.12)

are negative and the total number of sitesN . The statistical independence of the variables
ηl

i andξ l
i for different sites allows us to write this ratio as

ε =
∫ 0

−∞
d3l W(3l) (2.13)
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Figure 2. Fraction of unstable sites of patternη as a
function of its Hamming distance to stored patternξ
for the pseudo-inverse attractor neural network. The
parameters are (from top to bottom)α = 1, 0.99, 0.9,
0.6, 0.1 and 0.01. The broken curve isε = d which
coincides with the curve ofε for α = 0.

whereW(3l) is the probability distribution of the stabilities of test patternηl ,

W(3l) =
〈〈

δ

(
3l − 1√

N
ηl

i

∑
j 6=i

Jij η
l
j

)〉〉
. (2.14)

Here the notation〈〈 〉〉 stands for the averages over the patternsηl andξl , as well as over
the ensemble of weights that satisfy equations (1.4) or inequalities (1.5).

For the pseudo-inverse model, the distribution defined in equation (2.14) can be
calculated by defining an appropriate energy function, analogously to equation (2.2). The
final result is

W(3) =
√

1

2πQ(1 − b2)
exp

[
− (3 − bηiξi)

2

2Q(1 − b2)

]
(2.15)

whereQ = α/(1 − α) and we have dropped the pattern index for simplicity. Using the
distributions (2.11) and (1.3) to carry out the averages overηi and ξi , respectively, yields
the following expression for the fraction of unstable sites inη:

ε = 1 − b

2
+ bH

[
b√

Q(1 − b2)

]
(2.16)

whereH(x) = ∫ ∞
x

Dt . This quantity is shown in figure 2 as a function of the Hamming
distanced = (1 − b)/2 for several values ofα. For α = 0 we findε0 = d. As α increases
towardsαc = 1 the neighbourhood of the stored pattern starts to take a golf-course shape:
for small d the number of errors is a very sensitive function of the Hamming distance,
while for larged it becomes practically independent of the distance to the stored pattern.
In particular, atα = αc we find εc = 0 if d = 0 andεc = 1

2 otherwise.

3. The optimal attractor model

In this case the distribution of probability of the stabilities is given by (Kepler and Abbot
1988, Gardner 1989)

P(1) =
√

1

2π(1 − q)
2(1 − κ)

∫ ∞

−∞
Dy

exp[−42(1, y)/2]

H [4(κ, y)]
(3.1)
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Figure 3. Phase diagram of the optimal attractor neural
network in the planeα = 0. The tricritical point occurs
at κ = 1 andT = 0.799. The convention is the same
as for figure 1.

Figure 4. Phase diagram of the optimal attractor neural
network in the planeT = 0. The convention is the
same as for figure 1.

where

4(x, y) = x − y
√

q√
1 − q

. (3.2)

Here2(x) = 1 if x > 0 and 0 otherwise. The parameterq measures the overlap between
two distinct sets of optimal weights. It is given by the solution of the equation

q = α

√
1 − q

2π

∫ ∞

−∞
Dy (κ − y/

√
q)

exp[−42(κ, y)/2]

H [4(κ, y)]
. (3.3)

In the saturation regimeα = αc(κ) one hasq → 1, so that equation (3.1) simplifies
considerably. Since for Boolean neural networks the choice of the weights normalization
is irrelevant, we have setQ = 1 as usual.

3.1. Diluted version

The procedure to obtain all the transition lines of the phase diagram was already presented
in section 2.1 so, in this section, we present the final results only. We consider first the
simplest case, namely, the phase diagram in the planeα = 0 which is shown in figure 3. At
T = 0, the paramagnetic fixed point becomes unstable forκ > 0.651. TheTCP is located
at κ = 1 andT = 0.799. For largeκ the continuous transition is very well approximated
by the linear relationT = κ.

The zero-temperature limit is also simple since the retrieval fixed point ism∗ = 1 in
this limit. The phase diagram in the planeT = 0, shown in figure 4, does not present
the continuous transition between the retrieval and the paramagnetic phases. The short-
broken curve, which delimits the region of stability of the fixed pointm∗ = 0, intersects the
α = 0 axis atκ = 0.651. Moreover, it intersects the discontinuous transition line, given by
α = αc(κ), at α = 0.42 andκ = 1.2, in agreement with the results of Gardner (1989) and
Amit et al (1990). Although we use the same convention to represent the discontinuous
transitions in figures 3 and 4 they are qualitatively different: the transition in figure 3 is due
to the disappearance of the retrieval fixed point of equation (2.8), while the one depicted
in figure 4 simply delimits the region where a set of weights that satisfies the inequalities
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Figure 5. Phase diagram of the optimal attractor neural network in the planesκ = 0, 0.5, 0.7,
1.0, 1.1, 1.2, 1.5, 1.7 and 2.0. The convention is the same as for figure 1.

(1.5) exists, and therefore has nothing to do with equation (2.8). We will refer to the line
α = αc(κ) as the termination line. Forα > αc(κ) we could consider the ensemble of
weights that minimize the number of violations of the stability criterion, in a similar way as
we have done for the pseudo-inverse model in the regionα > 1. However, as mentioned
before, the paramagnetic fixed point is the only asymptotic solution of the resulting dynamic
equation in this case (Amitet al 1990).

Finally, we turn to generic values of the control parametersα, κ andT . In this case, the
calculation ofg(m), equation (2.7), involves the evaluation of a triple integral that, however,
can be reduced to a double integral through an appropriate change of the integration variables
that allows for the analytical integration over1. The phase diagram in the planesκ = 0, 0.5,
0.7, 1.0, 1.1, 1.2, 1.5, 1.7 and 2.0 is presented in figure 5. Forκ = 0 the retrieval fixed point
is unstable, although any non-zero value ofκ can stabilize it. This can be easily seen by
verifying the stability conditiong′(m = 1) > 0 atT = 0, since if this fixed point is unstable
at T = 0, it is very likely to be unstable for non-zero temperatures too. In particular, in
this limit we find g′(m∗ = 1) → −∞ for κ = 0, andg′(m∗ = 1) = 1 for κ > 0. As κ
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increases from zero, the region of stability of the retrieval fixed point also increases. The
discontinuous transition ends abruptly at the termination lineα = αc(κ). For κ > 0.651
there appears a region near the originT = 0 andα = 0 where the paramagnetic fixed point
is unstable. Following our convention, the boundary of this region is represented by the
short-broken curve. This curve first intersects the discontinuous transition line atα = 0 and
κ = 1; it first intersects the termination line atT = 0 andκ = 1.2. The tricritical point (TCP)
generated atκ = 1 reaches the termination line atκ = 1.7. As a result, the discontinuous
transition and theTCP disappear forκ > 1.7. Besides, the retrieval fixed point becomes
the only stable fixed point below the continuous transition line. As expected, increasing
the margin parameterκ increases the robustness of the network to noise and decreases its
storage capacity.

Comparing the phase diagram of the pseudo-inverse model, presented in figure 1, with
the phase diagram of the optimal attractor model, presented in figure 5, we can conclude
that for the same storage capacityαc = 1 (achieved byκ ≈ 0.470) the pseudo-inverse
performs better. In fact, besides being more robust to noise, the pseudo-inverse network
presents a regime where the retrieval fixed point is the only stable fixed point, while for the
optimal attractor network this regime is present forκ > 0.651 only.

3.2. Neighbourhood of a stored pattern

In this case the distribution of probability of the stabilities of the test patternη is given by

W(3) = e−32/2

√
2π

∫ ∞

−∞
Dy

∫ ∞

−∞
Dx

H [41]

H [42]
(3.4)

where

41 = κ − b3ηiξi −
√

q(1 − b2)x√
(1 − q)(1 − b2)

(3.5)

and

42 = κ − bηiξi

(
3q + √

q(1 − q)y
) −

√
q(1 − b2)x√

1 − q
. (3.6)

As before, the triple integral that appears in the evaluation ofε can be reduced to a double
integral through an appropriate change of the integration variables. The dependence ofε

on d for κ = 0 is presented in figure 6. In particular, forα = 0 we find

ε0 = 1 − b

2
+ b

π
arccosb (3.7)

while for α = αc = 2 we find εc = 0 for b = 1 and εc = 1/4 + ε0/2 otherwise. It is
interesting to compare these results with those for the pseudo-inverse network. While the
dependence ofε0 on d is very simple for the pseudo-inverse model, namelyε0 = d, it is
quite complex for the optimal attractor: any small deviation from the stored pattern leads to
an abrupt increase in the number of unstable sites, since all order derivatives ofε0 diverge
at d = 0. This result seems to corroborate the conclusion drawn from our analysis of the
diluted network that the basins of attraction of the stored patterns vanish forκ = 0.

In order to better compare the pseudo-inverse and the optimal attractor models, we
chooseκ ≈ 0.470 so that the storage capacity of both models become the same (αc = 1).
Figure 7 shows the dependence ofε on d for this case. For smalld we find ε ≈ d, that
contrasts with the non-analytic behaviour of the caseκ = 0. It is interesting that a non-zero
value of κ guarantees a smooth neighbourhood, i.e.ε ≈ d even at the saturation regime
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Figure 6. Fraction of unstable sites of patternη as a
function of its Hamming distance to stored patternξ for
the optimal attractor neural network. The parameters
areκ = 0 and (from top to bottom)α = 2, 1, 0.5 and
0. The broken curve isε = d.

Figure 7. Same as figure 6 but forκ = 0.470 and (from
top to bottom)α = 1, 0.5, 0.25 and 0.

α = αc. Larger values ofκ increase the range ofd for which ε ≈ d. In particular, for
κ → ∞ we find ε → d for α 6 αc → 0. This result leads us to conjecture that the
smoother the neighbourhood of a stored pattern, the larger its basin of attraction.

4. Conclusion

In this paper we have presented a comparison between the retrieval properties of two
well known associative memory models: the pseudo-inverse and optimal attractor neural
networks. The first part of our analysis deals with extremely diluted neural networks, for
which the one-step dynamics (Kepler and Abbot 1989) becomes exact for all times (Derrida
et al 1987, Gardner 1989). The phase diagram of the pseudo-inverse model showing the
regions of existence of the paramagnetic and retrieval phases is presented in the space(α, T ),
thus generalizing the zero-temperature analysis of Opperet al (1989). Moreover, the phase
diagram of the optimal attractor neural network is presented in the full space of parameters
(α, κ, T ). We note that this model had been studied at the saturation regimeα = αc(κ)

only (Gardner 1989, Amitet al 1990). Although our analysis of the diluted networks is
quite straightforward, in the sense that the dynamic equation (2.7) is well known (Amitet
al 1990), it is justified since the fixed points of this equation have not been investigated for
arbitrary values of the parametersα, κ andT .

In the second part of our analysis we present an original analytical technique to study
the nature of the neighbourhood of a stored patternξl . More specifically, we calculate
analytically the fraction of sitesε that become unstable whend sites of a stored pattern are
flipped. We think this is an important piece of information to characterize an associative
memory model. In particular, we can easily think of an artificial dynamics that guarantees
the retrieval of the stored patterns in the case thatε ≈ d: the dynamics must be such that
only site flips that decrease the number of unstable sites are allowed. Thus, thed unstable
sites will eventually be flipped and the stored pattern recovered. We note that the local
structure of the neighbourhood of a stored pattern, characterized byε(d), is independent of
the degree of dilution of the network, so the results presented in figures 2, 6 and 7 are valid
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both for the diluted and for the fully connected neural networks.
The existence of fixed points other than the stored patterns is an important issue in

the analysis of the pseudo-inverse and the optimal attractor neural networks. For the
pseudo-inverse model, this issue was addressed by Kuhlmann and Anlauf (1994) who have
calculated an upper bound to the total number of metastable states as a function of the
Hamming distance to a stored pattern. In particular, they have found that there are areas
around the patterns in which nearly no metastable states exist. The size of these areas
decreases asα increases towardsαc = 1. Such analysis is complementary to ours, which
presents the fraction of unstable sites of atypical (not necessarily metastable) state as a
function of its Hamming distance to a stored pattern. In fact, the finding thatε ≈ d for α

not too nearαc seems to corroborate the results of Kuhlmann and Anlauf (1994). To the
best of our knowledge, however, no similar analysis has been carried out for the optimal
attractor neural network.

The results presented in this paper allow for a better comparison between the retrieval
performances of the pseudo-inverse and the optimal attractor models. On the one hand, the
analysis of the diluted neural networks shows that for the storage levelαc = 1 the pseudo-
inverse model is more robust to noise and its attractive fixed points possess larger basins of
attraction. On the other hand, the analysis of the neighbourhood of a stored pattern indicates
that for smallα the pseudo-inverse attractive fixed points possess a smoother neighbourhood
than the optimal attractor’s, while forα near the saturation regime this situation is reversed.
As mentioned before, we believe that the smoother the neighbourhood, the larger the basin of
attraction of the stored pattern. Moreover, both analyses indicate that forκ = 0 the optimal
attractor neural network is useless as an associative memory model, since the basins of
attraction of the stored patterns vanish for all values ofα andT .
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