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Abstract. We investigate the dependence of the retrieval properties of the pseudo-inverse and
optimal attractor neural networks on the fraction of stored patteriise temperaturg and the
margin parametet. Phase diagrams in the full space of parameters are presented in the regime
of extreme dilution, i.e. when the connectivity satisfies the conditio « In N, where N

is the number of neurons. Furthermore, we study analytically the neighbourhood of a stored
pattern for both models by calculating the average fraction of unstableesitea pattern that
differs by d sites from a given stored pattern. This analysis may shed light on the properties of
the basins of attraction of the stored patterns.

1. Introduction

The usefulness of attractor neural networks as models of associative memory was first
pointed out to the statistical physics community by Hopfield (1982). The basic idea is
to specify the synaptic weight; between theV neurons that compose the network so
that a given set ofP = o N binary patternf’ = (g{, el E}V), [l =1,..., P become the
equilibrium states of the following stochastic dynamics: given the state of the network at
time ¢ then the state of neurohat timer + 1 will take on the values = +£1 with a
probability
1

1+exp[-20h;(1)/T]
whereh; (1) = Zﬁéi JijS;(t) and T is by definition the temperature. The parameter that
measures the proximity of star) to pattern¢’ is the retrieval overlap

mh = % Z Si(0)! . 1.2)

(1.1)

It is usually assumed that the componejtare statistically independent random variables
drawn from the distribution

pE) =38 -1+ 35¢ +1) (1.3)

whered(x) is the Dirac delta function.

The equilibrium properties of the Hopfield model, where the weights are given by the
Hebb rule, have been thoroughly studied by Amital (1985, 1987). Moreover, in the
limit of extreme random dilution, i.e. when the connectivity of the netwGrkatisfies the
conditionC « In N, Derridaet al (1987) have solved exactly the neural dynamics (1.1). In
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this paper we study the retrieval properties of two classical associative memory models—the

pseudo-inverse and optimal attractor neural networks—which we describe in what follows.
The pseudo-inverse attractor neural network model (Kohonen 1984, Persehahz

1986) can store perfectly a set of linearly independent patterns. The wejghte obtained

by picking the minimal norm solution of the set &f linear equations

- 1 l I _ —
Al ﬁg, ;J,,g] 1 I=1,...,P (1.4)
for eachi = 1,...,N. The quantityA! is termed the stability of the componegt.
The equilibrium properties of the pseudo-inverse model have been studied by Kanter and
Sompolinsky (1987) within the replica-symmetric framework in the regime of non-zero
temperature. In particular, these authors have found that the pseudo-inverse storage capacity
for random patterns ia, = 1.

The pseudo-inverse model, however, is not optimal in the sense that its storage capacity
is not maximal. In a remarkable paper, Gardner has shown how the ensemble of weights of
the optimal attractor neural network could be characterized within the statistical mechanics
framework (Gardner 1988). In fact, the weights of the optimal attractor neural network
must satisfy the inequalities

Al >k (1.5)

for all i and/. The margin parametar > 0 is introduced in order to ensure that the stable
patternst’ possess a finite basin of attraction, although it is not at all obvious that the size of
the basins of attraction must vanish foe= 0. It has been shown that the storage capacity
of the optimal attractor neural network for random patterns decreases with increaeiuly

in particular, thatx., = 2 for «x = 0 (Gardner 1988).

In another remarkable contribution, Gardner has shown how the dynamics of the diluted
optimal attractor neural network could be solved exactly in the zero-temperature regime
(Gardner 1989). At non-zero temperature the retrieval overlap with a given stored pattern
obeys the equation (Amit al 1990)

o o0 1
M1 = /m dA P(A) /m Dy tanh[T (m,A +y0Q¥% /1 - m,z):| (1.6)

where Dy = dy/+/2re™*/2 is the Gaussian measure agd= Q; = 1/N >, J5 is the
squared norm of the synaptic weights. H&téA) is the distribution of probability of the
stabilities defined as (Keppler and Abbot 1988)

! 1 1 ! !
P(A}) <6(A, Nk ; Jl,s,)>. (1.7)
The notatior( ) stands for the averages over the pattéfrand over the ensemble of weights
that satisfy equations (1.4) or inequalities (1.5) depending on whether we are considering
the pseudo-inverse or the optimal attractor model. We noteﬂhaé) = P(A) because of
the statistical independence of the random variables

What is remarkable about equation (1.6) is that it applies to any neural network model;
the dependence on the specific model enters thrdegh) only. It must be emphasized,
however, that it applies only to the case where there is only one condensed patteri® at
The diluted version of the pseudo-inverse model has been studied by Epadg1989) in
the regime of zero temperature, while Arattal (1990) have carried out a thorough analysis
of the diluted version of the optimal attractor neural network in the saturation regime, i.e.
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ata = a.(k). Actually, the zero-temperature analysis of Gardner (1989) was also restricted
to this regime.

The goal of this paper is twofold. First, we consider the diluted versions of the pseudo-
inverse and optimal attractor neural networks. We extend the analysis of @ppr
(1989) for the pseudo-inverse model to the non-zero temperature regime, thus obtaining
the phase diagram of the model in the sp&eeT). Furthermore, we obtain the phase
diagram of the optimal attractor neural network in the full space of parameteks T).

As mentioned above, this phase diagram was known at the saturation regime, («)

only. Due to the acknowledged importance of these two associative memory models, we
think the presentation of their complete phase diagrams is a worthwhile endeavour. Second,
we investigate the nature of the neighbourhood of a stored pattern in the pseudo-inverse
and optimal attractor neural network models. To achieve this we evaluate the fraaifon
unstable sites in a test pattephthat is at a fixed Hamming distandeto the stored pattern

¢'. Clearly, the dependence efon d contains much information about the neighbourhood

of the stored patterg’. On the one hand, i€ = d, so that every site we flip frong’
becomes an unstable site, then the neighbourhood of this pattern is expected to be quite
smooth. On the other hand, if a very small deviation from the fixed pgineads to an
abrupt increase in the number of unstable sites then its neighbourhood resembles a golf
course. In this case we can conclude that the basin of attractighisfvanishingly small.

The remainder of this paper is organized as follows. In section 2 we consider the
pseudo-inverse model. The phase diagram in the s@ac®) is presented for the diluted
version of the model and the dependence @h d is calculated. Section 3 is devoted to
the analysis of the optimal attractor neural network. The phase diagram in the full space of
parameterso, «, T) is presented and the neighbourhood of a stored pattern is investigated.
Finally, in section 4 we summarize our results and present some concluding remarks.

2. The pseudo-inverse model

As mentioned above, the weights of the pseudo-inverse network are given by the minimal
norm solution of equation (1.4). Although this solution can be expressed in terms of the
correlation matrixCy; = 1/N ", £¥&! (Kohonen 1984),

1
fij = > EkEC (2.1)
kl
this explicit formulation is not necessary to the analysis of the diluted network for which the

knowledge of the probability distribution of the stabilitias suffices. In order to evaluate
P(Aﬁ) we introduce the energy function

1
Ei(h) =) (A5—1)2+h8<A5—ﬁ§;l§ J,--sf> (2.2)
1 C J#i ™
so that
1dInZz;
A = — jim =54 23
PEI==008 on oo @)

where Z; is the partition function

Ziy =] / dJi; exp(—BEi(h) (2.4)
j —00
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and the bar indicates an average over the random variableblereﬂ and h are simply
auxiliary variables whose physical significance is irrelevant to our analysis. In the following
we will omit the indicesi and! since the statistical independencegpimakes all sites and

all patterns equivalent. Although the procedure to calcuita) is standard (Gardner and
Derrida 1988), we must be careful with the choice of the normalizaflorfor « < 1, it
must be chosen as the smallest value for whigth = 0) = 0, while foro > 1 it must be
chosen so as to minimizg; (h = 0) (Fontanari 1993). Fox < 1 we findQ = «/(1 — @)

and

PA) =68(A -1 (2.5)
while fora > 1 we findQ = 1/(e — 1) and

P(A) = o @ (a-lY 2.6
@ =\ ora=5% 205 (*~4) | 20

Finally, we note that replacing the 1 on the right-hand side of (1.4) by a positive parameter,
say«, has no effect in our analysis since this parameter can be eliminated altogether simply
by redefining the normalization of the weights.

2.1. Diluted version

OnceP(A) is known, the analysis of the dynamics of the diluted neural network becomes
straightforward. The different phases in the spacel’) are determined by the fixed points
m,y1 = m, = m* of equation (1.6). In order to study these fixed points for a general neural
network model it is convenient to define the function

o0 o0 l
gm)=m — / dA P(A)/ Dy tanh|:T (mA +y0¥23/1— m2>:| (2.7)
so that the fixed points are the roots of

g(m)=0. (2.8)

We note that sincg(—m) = —g(m) the paramagnetic fixed poimt* = 0 is always a
root. Moreover, since-m* is also a root we consider in the following analysis only the
non-negative roots of equation (2.8). Expansion of this equation in powensyitlds

x _ @l/2 g'(m =0)
m* =6 ’7g/”(m —0 (2.9)

for the non-zero solution. Thus, the equation

determines the continuous transition line between the retriewdl & 0) and the
paramagneticig* = 0) phases, provided that”(m = 0) # 0. As usual in this sort of
mean-field analysis, the simultaneous vanishing’6§m = 0) and g’(m = 0) determines

the tricritical point fcp). Furthermore, equation (2.10) also gives the limit of stability of
the paramagnetic fixed poimt* = 0: if g'(m = 0) > O then it is an attractive fixed
point while if ¢’(m = 0) < 0 it is a repulsive fixed point. For the pseudo-inverse and the
optimal attractor models a numerical analysis of equation (2.8) shows that # O is
stable then either it is the only root or there are two additional positive roots. If, however,
m* = 0 is unstable then there is only one additional positive root. Finally, to determine the
discontinuous transition line we must solyén) = 0 andg’(m) = 0 simultaneously, since
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Figure 1. Phase diagram of the pseudo-inverse
attractor neural network showing the retrieval (R) and
the paramagnetic (P) phases. The full curve is
the discontinuous transition, the long-broken curve the
continuous transition, and the short-broken curve the limit
of stability of the paramagnetic phase. The tricritical point
occurs atr = 0.249 andT = 0.648.

02+

0.0
0.0

at that transition, which occurs in a region wher& = 0 is stable, the two positive roots
coalesce into a double root before disappearing altogether.

Reverting to the pseudo-inverse model, we have found thatxfor 1 the only root
of equation (2.8) is the paramagnetic om&, = 0. A similar result has been found by
Amit et al (1990) in their analysis of the optimal attractor network dor> «.(x), i.e. in
the regime where the patterns cannot be perfectly stored. The phase diagr@arg foris
presented in figure 1, where the full curve represents the discontinuous transition, the long-
broken curve the continuous transition, and the short-broken curve the limit of stability
of the paramagnetic fixed point. Thep is located ate = 0.249 andT = 0.648. The
short-broken curve intersects tlie= 0 line ate = 1/(1 + 7/2) ~ 0.389, in agreement
with the result of Oppeet al (1989). Between the full and the short-broken curves both
phases coexist. We note that the phase diagram of the fully connected model presents a
discontinuous transition only (Kanter and Sompolinsky 1987).

2.2. Neighbourhood of a stored pattern

As pointed out in the introduction, the neighbourhood of a stored pattern can be analysed
by calculating the distribution of stabilities of a test pattgfrthat possesses a fixed overlap
with the stored patterg’. More specifically, the components of the test pattern are generated
according to the conditional probability distribution

1+5b 1-b
puleh = =2 7500 —&h + =750+ (2.11)

where 0< b < 1 measures the overlap betweghand¢’. This parameter is related to the
Hamming distance between these two patterng:= (1 — b)/2. We focus on the fraction
of unstable sites ofy’, i.e. the ratioe between the number of sites for which the stabilities

1

A==l > T} (2.12)
VN J#i

are negative and the total number of sifés The statistical independence of the variables

nt andg! for different sites allows us to write this ratio as

0
€= / da’ w(ah (2.13)
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Figure 2. Fraction of unstable sites of patterpas a

function of its Hamming distance to stored patte&n

for the pseudo-inverse attractor neural network. The
. , . L parameters are (from top to bottom)= 1, 0.99, Q9,

0‘00'0 0.1 0.2 0.3 0.4 o5 0.6, 01 and 001. The broken curve is = d which

d coincides with the curve of for @ = 0.

whereW(A') is the probability distribution of the stabilities of test patteyh

WA = <<8(Al — Jlﬁnf ; J,-,-n_é)». (2.14)

Here the notatior{( )) stands for the averages over the pattaghand&’, as well as over
the ensemble of weights that satisfy equations (1.4) or inequalities (1.5).

For the pseudo-inverse model, the distribution defined in equation (2.14) can be
calculated by defining an appropriate energy function, analogously to equation (2.2). The
final result is

_ 1 (A —bni&)?
W = roa=rm | ~s0a - ] (219

where Q9 = «/(1 — «) and we have dropped the pattern index for simplicity. Using the
distributions (2.11) and (1.3) to carry out the averages gveandé;, respectively, yields
the following expression for the fraction of unstable sitegjin

1—-b b
= "4 pH| - 2.16
‘T2 7 [\/Q(l—bz)] (2.10)

where H(x) = f;’o D:. This quantity is shown in figure 2 as a function of the Hamming
distanced = (1 — b)/2 for several values af. Fora = 0 we findeg = d. As « increases
towardsa,. = 1 the neighbourhood of the stored pattern starts to take a golf-course shape:
for small d the number of errors is a very sensitive function of the Hamming distance,
while for larged it becomes practically independent of the distance to the stored pattern.
In particular, ate = o, we finde, =0 if d = 0 ande, = % otherwise.

3. The optimal attractor model

In this case the distribution of probability of the stabilities is given by (Kepler and Abbot
1988, Gardner 1989)

1 ©  expl-E%(A, y)/2]
PA)= | ——— O(A — D 3.1
B =V2a-9®" “)/m Y HIE (e )] (31)
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Figure 3. Phase diagram of the optimal attractor neuraFigure 4. Phase diagram of the optimal attractor neural
network in the plane: = 0. The tricritical point occurs network in the planel = 0. The convention is the
atk =1 andT = 0.799. The convention is the same same as for figure 1.

as for figure 1.

where
X —yJ/q9
E(x,y) = ——. 3.2)
v1i—gq

Here®(x) = 1 if x > 0 and 0 otherwise. The parametemeasures the overlap between
two distinct sets of optimal weights. It is given by the solution of the equation

_|l=q (= expl-E*(x, y)/2]
q=ac 7/_00 Dy (« —y/v/4) HIE (x, )] . (3.3)

In the saturation regime = «o.(x) one hasq — 1, so that equation (3.1) simplifies
considerably. Since for Boolean neural networks the choice of the weights normalization
is irrelevant, we have sad = 1 as usual.

3.1. Diluted version

The procedure to obtain all the transition lines of the phase diagram was already presented
in section 2.1 so, in this section, we present the final results only. We consider first the
simplest case, namely, the phase diagram in the plared which is shown in figure 3. At
T = 0, the paramagnetic fixed point becomes unstablecfer 0.651. TheTcr is located
atk =1 andT = 0.799. For largec the continuous transition is very well approximated
by the linear relatiorl’ = «.

The zero-temperature limit is also simple since the retrieval fixed point*is= 1 in
this limit. The phase diagram in the plarde = 0, shown in figure 4, does not present
the continuous transition between the retrieval and the paramagnetic phases. The short-
broken curve, which delimits the region of stability of the fixed pairit= 0, intersects the
a = 0 axis at« = 0.651. Moreover, it intersects the discontinuous transition line, given by
a = a.(k), ate = 0.42 and« = 1.2, in agreement with the results of Gardner (1989) and
Amit et al (1990). Although we use the same convention to represent the discontinuous
transitions in figures 3 and 4 they are qualitatively different: the transition in figure 3 is due
to the disappearance of the retrieval fixed point of equation (2.8), while the one depicted
in figure 4 simply delimits the region where a set of weights that satisfies the inequalities



3048

C Rodrigues Neto ahJ F Fontanari

20

20

2.0
x = 0.0 x=05 x=07
15 15 15
X P 10 1.0
- 1.0 P e
0.5 0s 0.5
0.0 . ! g g s 04
60 02 04 06 08 10 0 02 04 08 03 10 0 02 04 06 08 10
o -3 a
20 20, 20
x=10 x=1.1 x=12
15 1.5 1.5}
P
08 1.0 08 08 0
o o o
20 20 20
AN
A Y
x= 15 g x=17 \ ®¥=2.0
15 151 N 15
N ~
~ ~
N Y
o,
1.0 P 1.0 P 10
b - [, P
R
0.5} 05
R 0st R
0. 3 S 0.0 e 0.0 n
Y5z Ti 0 05 To 00 02 04 06 08 1.0 00 02 04 06 08 10
o a o

Figure 5. Phase diagram of the optimal attractor neural network in the plare®, 05, 0.7,
1.0, 11, 12, 15, 17 and 20. The convention is the same as for figure 1.

(1.5) exists, and therefore has nothing to do with equation (2.8). We will refer to the line
a = a.(«) as the termination line. Far > «.(x) we could consider the ensemble of
weights that minimize the number of violations of the stability criterion, in a similar way as
we have done for the pseudo-inverse model in the regien 1. However, as mentioned
before, the paramagnetic fixed point is the only asymptotic solution of the resulting dynamic
equation in this case (Amét al 1990).

Finally, we turn to generic values of the control parameders andT'. In this case, the
calculation ofg (m), equation (2.7), involves the evaluation of a triple integral that, however,
can be reduced to a double integral through an appropriate change of the integration variables
that allows for the analytical integration ovar The phase diagram in the planes- 0, 0.5,
0.7,10, 11, 12,15, 17 and 20 is presented in figure 5. Fer= 0 the retrieval fixed point
is unstable, although any non-zero valuexo€an stabilize it. This can be easily seen by
verifying the stability conditiorg’(m = 1) > 0 atT = 0, since if this fixed point is unstable
at T = 0, it is very likely to be unstable for non-zero temperatures too. In particular, in
this limit we find g'(m* = 1) - —oo for k = 0, andg’(m* = 1) = 1 fork > 0. As«k
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increases from zero, the region of stability of the retrieval fixed point also increases. The
discontinuous transition ends abruptly at the termination dine «.(x). Forx > 0.651

there appears a region near the origin= 0 anda = 0 where the paramagnetic fixed point

is unstable. Following our convention, the boundary of this region is represented by the
short-broken curve. This curve first intersects the discontinuous transition kne-& and

k = 1; it first intersects the termination line At= 0 andx = 1.2. The tricritical point cpP)
generated at = 1 reaches the termination line at= 1.7. As a result, the discontinuous
transition and thercp disappear fox > 1.7. Besides, the retrieval fixed point becomes
the only stable fixed point below the continuous transition line. As expected, increasing
the margin parameter increases the robustness of the network to noise and decreases its
storage capacity.

Comparing the phase diagram of the pseudo-inverse model, presented in figure 1, with
the phase diagram of the optimal attractor model, presented in figure 5, we can conclude
that for the same storage capacity = 1 (achieved byx ~ 0.470) the pseudo-inverse
performs better. In fact, besides being more robust to noise, the pseudo-inverse network
presents a regime where the retrieval fixed point is the only stable fixed point, while for the
optimal attractor network this regime is present for 0.651 only.

3.2. Neighbourhood of a stored pattern

In this case the distribution of probability of the stabilities of the test patteisigiven by

R ©  H[Eq]
W(A) = D D 3.4
“w JZ/_OO y/_oo *H[E] 34

where

- kK —bAn& —/q(1—b?)x

o1 = (35)

VA —-9)1-5b?

and

g, = ik (Mg +Vad—q)y) — VgL - b?)x (3.6)

1-g¢
As before, the triple integral that appears in the evaluation cdn be reduced to a double
integral through an appropriate change of the integration variables. The dependence of
ond for k = 0 is presented in figure 6. In particular, fer= 0 we find
1-b

b
€= —— + — arccod 3.7)
2 T

while for « = o, = 2 we finde, = 0 for b = 1 ande, = 1/4 + ¢y/2 otherwise. It is
interesting to compare these results with those for the pseudo-inverse network. While the
dependence ofp on d is very simple for the pseudo-inverse model, namgly= d, it is
quite complex for the optimal attractor: any small deviation from the stored pattern leads to
an abrupt increase in the number of unstable sites, since all order derivatiggsivérge
atd = 0. This result seems to corroborate the conclusion drawn from our analysis of the
diluted network that the basins of attraction of the stored patterns vanish=£00.

In order to better compare the pseudo-inverse and the optimal attractor models, we
choosex ~ 0.470 so that the storage capacity of both models become the samseX).
Figure 7 shows the dependencecobn d for this case. For small we find e ~ d, that
contrasts with the non-analytic behaviour of the case 0. It is interesting that a non-zero
value of ¥ guarantees a smooth neighbourhood, é.e¢ d even at the saturation regime
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Figure 6. Fraction of unstable sites of patternas a Figure 7. Same as figure 6 but far = 0.470 and (from
function of its Hamming distance to stored pattérfor  top to bottom)e = 1, 0.5, 0.25 and 0.

the optimal attractor neural network. The parameters

arex = 0 and (from top to bottomy = 2, 1, Q5 and

0. The broken curve is = d.

a = a.. Larger values ok increase the range af for which € ~ d. In particular, for
Kk — oo we finde — d for « < o — 0. This result leads us to conjecture that the
smoother the neighbourhood of a stored pattern, the larger its basin of attraction.

4. Conclusion

In this paper we have presented a comparison between the retrieval properties of two
well known associative memory models: the pseudo-inverse and optimal attractor neural
networks. The first part of our analysis deals with extremely diluted neural networks, for
which the one-step dynamics (Kepler and Abbot 1989) becomes exact for all times (Derrida
et al 1987, Gardner 1989). The phase diagram of the pseudo-inverse model showing the
regions of existence of the paramagnetic and retrieval phases is presented in tHe space

thus generalizing the zero-temperature analysis of Oppal (1989). Moreover, the phase
diagram of the optimal attractor neural network is presented in the full space of parameters
(o, k, T). We note that this model had been studied at the saturation regimex,. (k)

only (Gardner 1989, Amitt al 1990). Although our analysis of the diluted networks is
quite straightforward, in the sense that the dynamic equation (2.7) is well known @amit

al 1990), it is justified since the fixed points of this equation have not been investigated for
arbitrary values of the parameters« andT.

In the second part of our analysis we present an original analytical technique to study
the nature of the neighbourhood of a stored pat#tn More specifically, we calculate
analytically the fraction of sites that become unstable whehsites of a stored pattern are
flipped. We think this is an important piece of information to characterize an associative
memory model. In particular, we can easily think of an artificial dynamics that guarantees
the retrieval of the stored patterns in the case ¢hatd: the dynamics must be such that
only site flips that decrease the number of unstable sites are allowed. Thusutistable
sites will eventually be flipped and the stored pattern recovered. We note that the local
structure of the neighbourhood of a stored pattern, characterizedpyis independent of
the degree of dilution of the network, so the results presented in figures 2, 6 and 7 are valid
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both for the diluted and for the fully connected neural networks.

The existence of fixed points other than the stored patterns is an important issue in
the analysis of the pseudo-inverse and the optimal attractor neural networks. For the
pseudo-inverse model, this issue was addressed by Kuhlmann and Anlauf (1994) who have
calculated an upper bound to the total number of metastable states as a function of the
Hamming distance to a stored pattern. In particular, they have found that there are areas
around the patterns in which nearly no metastable states exist. The size of these areas
decreases as increases towards. = 1. Such analysis is complementary to ours, which
presents the fraction of unstable sites ofypical (not necessarily metastable) state as a
function of its Hamming distance to a stored pattern. In fact, the findingethat/ for o
not too nearx. seems to corroborate the results of Kuhlmann and Anlauf (1994). To the
best of our knowledge, however, no similar analysis has been carried out for the optimal
attractor neural network.

The results presented in this paper allow for a better comparison between the retrieval
performances of the pseudo-inverse and the optimal attractor models. On the one hand, the
analysis of the diluted neural networks shows that for the storage devell the pseudo-
inverse model is more robust to noise and its attractive fixed points possess larger basins of
attraction. On the other hand, the analysis of the neighbourhood of a stored pattern indicates
that for smallx the pseudo-inverse attractive fixed points possess a smoother neighbourhood
than the optimal attractor’s, while far near the saturation regime this situation is reversed.

As mentioned before, we believe that the smoother the neighbourhood, the larger the basin of
attraction of the stored pattern. Moreover, both analyses indicate that=fd® the optimal
attractor neural network is useless as an associative memory model, since the basins of
attraction of the stored patterns vanish for all valuese@ndT'.
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